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ABSTRACT 
 
 An extensive set of measurements was recently obtained, of the scintillation of a laser 
propagated over long horizontal paths through atmospheric turbulence, at altitudes spanning the 
tropopause. These measurements were made over sequences of parallel but displaced paths, like the 
rungs of a ladder. It is shown here that the intensity reductions due to scintillation of two parallel paths 
separated by 35.6 meters are partially correlated. Further, the correlations between paths with the 
discrete experimental separations are used to construct the correlation functions for arbitrary path 
displacement. The variance in continuous moving averages of the relative intensity is then found in 
terms of the correlation functions, parameterized by the distance the propagation path is swept through 
the turbulence. An empirical formulation is developed for use in assessing the expected distribution of 
intensity reductions in various laser systems. This analysis recovers the statistics of atmospheric 
scintillation for the important regime in between the two extremes of a snapshot and a long time 
average. 
 
 

1. INTRODUCTION 

 Light propagating through atmospheric turbulence undergoes several phenomena that degrade 
the attainable intensity or resolution from their diffraction limits. One of these, scintillation, generates 
a perturbation on the amplitude of the electro-magnetic field, that depends on position in the 
transmitting or receiving aperture. When the field amplitude contributions from all parts of the 
aperture are added, the resulting target intensity is found to differ from the diffraction-limited value. 
 
 The scintillated intensity depends on the instantaneous realization of the index of refraction 
perturbations generated along the propagation path by the turbulence. As the propagation path 
traverses the turbulence, the scintillated intensity changes. Define S as the instantaneous intensity 
divided by the intensity that would have been found in the absence of scintillation. As the turbulent 
atmosphere moves due to winds, S follows a log-normal distribution, which is to say that the log of S 
follows a normal distribution.  
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 For applications where the illumination is essentially instantaneous (as in pulsed laser 
applications), the distribution of delivered intensity simply follows the log-normal distribution. For 
applications where the illumination lasts a long time, or where many pulses are employed, the 
effective delivered intensity is simply the mean of the log-normal distribution of S, also known as the 
scintillation Strehl.  
 
 For applications where the illumination takes place over an intermediate time, however, neither 
of these limits apply. The scintillation Strehl averaged over a finite time will also be a statistically 
distributed quantity. The distribution of the finite-time average scintillation Strehl has been examined 
by statistical analysis of nearly 100,000 measurements of S, taken in the ABLEX program.   
 
 The variance of the finite time average Strehl distribution is characterized by the variance of the 
distribution of the instantaneous S, the long time average Strehl, and the distance traversed by the 
propagation path during the illumination. An empirical fit for these distributions is developed in this 
paper.  
 

2. THE AIRBORNE LASER SCINTILLATION MEASUREMENTS (ABLEX) 

 Beginning in January 1993, Phillips Laboratory carried out a series of measurements of 
scintillation for propagation across long paths through the atmosphere1-4. In the experiment, a laser 
was emitted from one airplane (Harp), and the intensity profile was measured in a pupil plane 
scintillometer on a second airplane (the modified NC135 Argus). The pair made eight flights.  During 
each flight, there were a number of measurement series.  For each series, both planes were held at 
constant altitude, and maintained a constant separation.  The altitudes ranged from 330 to 481 hundred 
feet above sea level, and the separation ranged from 23 to 200 km. The series ranged from 10.5 to 608 
seconds in duration.  During each series, the laser on Harp was pulsed at six pulses per second.  Each 
pulse produced a frame of data, consisting of the intensity measured at each pixel in the scintillometer 
on Argus. In addition, for each measurement of the pulsed laser intensity profile, there was another 
measurement with the laser off, of the background noise level. At plane speeds of 415 knots, the 
propagation path of consecutive frames was displaced by 35.6 meters. 
 
 In total there were 176 data series taken, with 98,486 frames of laser intensity profile 
measurements. A subset of this data was constructed for this analysis, consisting of the 63 series which 
extended over 90 seconds or more.  This subset includes 67,012 of the data frames. 
 
 The instantaneous relative intensity S for a frame was obtained by squaring the aperture average 
of the square root of the measured pixel intensities, and then normalizing by the square of the aperture 
average of the square root of the series average pixel intensity. This normalization cancels the effects 
of variations in the atmospheric absorption and scattering, and beacon brightness. Phase perturbations 
have no effect on this relative intensity either, so this scintillation Strehl is the same as would be 
obtained in a system employing perfect phase compensation2.  
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3. STATISTICS OF S 

  Each series produced a sequence of S values, which is denoted by the set {Si}. The propagation 
path of consecutive measurements was displaced by 35.6 meters. Fig. 1 shows the 1465 consecutive 
values of Si (spanning over 52 km) for the 20th series of the 7th flight. 
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Figure 1. Measured instantaneous intensity reduction due to scintillation for 
the 20th series of the 7th ABLEX flight. Measurements were taken every 
35.6 meters along a flight of 52.15 km. The average intensity reduction is 
0.8673, and the variance is 0.1876. 

 
For this series, the mean value of {Si} is 0.8673, and the variance of {Si} is 0.1876. The distribution 
of {Si} is found by sorting the values in the set. The transpose of a plot of these sorted values can then 
be interpreted as a plot of the cumulative probability distribution. The distribution of {Si} is shown in 
Fig. 2, again using the 20th series of the 7th flight. Also shown is the cumulative probability for a log 
normal distribution with the same mean and variance. As was found for all 63 series, the distribution 
of {Si} is roughly log normal.   
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Figure 2. Cumulative probability distribution of the relative intensity data 
{Si}, from the 1465 measurements in the 20th series of the seventh flight. 
The log-normal distribution with variance of 0.1876 and mean of 0.8673 is 
also shown. 

 
 In Fig. 3, the variance of {Si} is shown as a function of the series Strehl, for the 63 series which 
extended 90 seconds or more. The series Strehl, S , is the mean of {Si}. The {Si} values are 
sometimes more and sometimes less clustered about the mean, depending on the particular series 
examined.  
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Figure 3. The variance of the instantaneous relative intensity for the 63 
ABLEX series with at least 90 seconds duration, as a function of the series 
Strehl. The fit of Eq[1] is shown as the solid line. 
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The variance of {Si} can be represented by the fit (least squares weighted by the number of frames in 
each series) 
 
  var{Si}FIT = 1.28ln(1 / S )  (1) 
 
This fit is also shown in Fig. 3, as the solid line. 
 

4. STATISTICS OF MOVING AVERAGE OF S 

 A graph of the moving average of consecutive frames of ABLEX data illuminates the physics of 
the problem. In Fig. 4, the moving average over 120 frames (4272 meters) is shown, for the 20th series 
of the 7th flight. It is clear that the relative intensity is not a stationary random function: there are slow 
variations in the mean relative intensity that have distance scales up to 10 kilometers. 
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Figure 4. The moving 120 frame consecutive average of the relative 
intensity, for the 20th series of the 7th ABLEX flight. 

 
 The objective here is to determine the statistics of continuous averages of S over finite times or 
displacements. Let S(x) be the intensity reduction due to scintillation. x is a coordinate which gives the 
displacement of the propagation path.  For the airborne applications, x corresponds to motion of the 
plane normal to the propagation path. For ground to space applications, x corresponds to the distance 
that the turbulent atmosphere moves due to wind. The average of S(x) for a continuous illumination in 
which the propagation path moves from xo to xo+X, denoted A(X;xo), is given by 
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  A(X; xo ) =
1
X dxS(x)xo

xo+X  (2) 

 
It is the distribution of A(X;xo) that we want to find. Plots of the distribution of the moving average of 
{Si} from the ABLEX data show that the distribution of A(X;xo) can be taken to be log normal. The 
distribution of A(X;xo) is completely specified by var(A(X)), the mean of S(x), and the assertion that 
it is log normal.  
 
 The variance of A(X;xo) can be found in terms of the correlation function of S(x). The 

correlation function5 of S(x) is defined as 
 
  BS ( ) = (S(xo) S )(S(xo + ) S )  (3) 

 

where S = S(x) =
lim

X
1
X dx
0

X
S(x)  is the expected value of S(x). The correlation function can be 

evaluated from each ABLEX series, using Eq[3]. Figure 5 shows the normalized correlation function 
of the relative intensity obtained from the 20th series of the 7th flight, where the normalized 
correlation function is  
 

  r( ) =
BS( )

BS (0)
 (4) 
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Figure 5. The normalized relative intensity correlation function, for the 20th 
series of the 7th ABLEX flight. The fit of Eq[5] is shown as the solid line. 
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For this series, the normalized covariance can be fit (least squares) as a function of  in meters, by  
 

  ri20( ) 1+ ( / 16.88)0.63( )
2

 (5) 

 
This fit is also shown in figure 5. 
 
 We next derive the variance of A(X;xo) in terms of the correlation function. The variance of 
A(X;xo) is 
 

  var (A(X)) = (A(X; xo ) S )2  (6) 

 
The angle brackets indicate the expectation value over all xo.  Now substitute Eq[2] into Eq[6] and 
convert the square of the integral into a double integral: 
 

  var (A(X)) = 1
X2

dx'
xo

xo+X

dx"
xo

xo+X

(S(x' ) S )(S(x") S )  (7) 

 
Noting the symmetry of the integrand allows the integral to be split into two halves: 
 

  var (A(X)) = 2
X2

dx'
xo

xo+X

dx"
x '

xo+X

(S(x' ) S )(S(x") S )  (8) 

 
Next substitute  = x" - x'. This gives 
 

  var (A(X)) = 2
X2

dx'
xo

xo+X

d
0

xo+X x '

(S(x' ) S )(S(x' + ) S )  (9) 

 
Next, exchange the order of integration, giving 
 

  var (A(X)) = 2
X2

d
0

X
dx'

xo

xo+X

(S(x ' ) S )(S(x' + ) S )  (10) 

 
Since the expectation value washes out the dependence of the integrand on x', the integral over x' is 
trivial: 
 

  var (A(X)) = 2
X2

d
0

X
(X ) (S(xo ) S )(S(xo + ) S )  (11) 
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or in terms of the correlation function 
 
 

  var (A(X)) = 2
X2

d
0

X
(X )BS ( )  (12) 

 
 
For X=0, this gives var(A(X)) = var(S(x)) = BS(0). The normalized variance of the continuous moving 
average, given by the ratio of the variance of the moving average to the variance of the instantaneous 
relative intensity can be then be defined: 
 

  R(X )
var (A(X ))

var (A(0))
=

2
X2

d
0

X
(X )r( )  (13) 

 
This integral can be discretized into a sum by dividing X into m subintervals: 
 

  R(X ) = 2
m2

(m i)
i=1

m
r(iX / m) + 2

X2
d
0

X / 2m
(X )r( )  (14) 

 
 
The summation term of Eq[14] gives the integral of Eq[13] from =X/2m to =X. It can be evaluated 
directly with the ABLEX discrete correlation function, such as that shown in Fig. 5. The integral term 
of Eq[14] gives the integral of Eq[13] from =0 to =X/2m. It can be evaluated using a fit to the 
correlation function for the particular ABLEX series, such as that given by Eq[5]. While the ABLEX 
data allows only a crude estimate of the correlation function for <X/2m, the integral term of Eq[14] is 
found to be insensitive to the functional form of the fit to the normalized correlation function, as long 
as r(0)=1, the derivative of r at 0 is 0, and the fit agrees well with the first few discrete values of the 
observed normalized correlation function.  
 
 For the 20th series of the 7th flight, for X=640.8 meters (i.e. m=18), the summation term of 
Eq[12] gives 0.044.  When the fit of Eq[5] is substituted into the integral term of Eq[14], the integral 
can be performed to give 0.022. The variance of the 640.8 meter average relative intensity is thus 
0.066 times the variance of the instantaneous relative intensity, for this series, which product is 
0.0124. 
 
 The summation term of Eq[14] can be obtained in terms of the variance of moving averages of 
ABLEX data. Let {Tni} be the set of N-n moving averages over n consecutive frames of {Si}, where 
{Si} is the set of N consecutive values of S from an ABLEX series.  The ith member of the set is thus 
 

  Tni =
1
n Si
j=i+1

n
 (15) 
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The variance of {Tni} for a given ABLEX series is then 
 

  var{Tni} = (1n (Sj S ))2

j=i+1

i+n
 (16) 

 
where the ensemble average now denotes an average over the N-n possible values of i in the ABLEX 
series. By means of a discretized version of the above derivation, there follows that 
 

  2
n2

(n k)
k=1

n
BE (kX / n) = var{Tni} var{Si} / n  (17) 

 
The interpretation of Eq[17] is that the first term of Eq[14] is equal to the variance of the discrete 
moving average minus that part of the discrete moving average variance that is due to the statistics of 
the finite sample. 
 
 The normalized variance of the continuous moving average has been evaluated as a function of 
X, for the 20th series of the 7th flight, and is shown in Fig. 6. Finally, we want to combine the results 
of the 63 ABLEX series which extended over 90 seconds or more. Figure 7 shows the variance of the 
640.8 meter continuous moving average as a function of the mean of {Si}, for these 63 ABLEX series. 
For X=640.8 meters, the average ratio over all series of var(A(X)) to var{S} is 0.0835. The line giving 
0.0835*1.28ln(1/S ) is also shown on Fig. 7. This fit also provides the best fit (least squares) of the 
data. 
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Figure 6. The normalized variance of the moving average of the relative 
intensity, as a function of the displacement of the propagation path during the 
illumination, for the 20th series of the 7th flight. 
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Figure 7. The variance of the continuous 640.8 meter moving average of the 
relative intensity, obtained from the 63 ABLEX series with duration of 90 
seconds or more.  Also shown is the fit described in the text. 
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 The normalized variance of the continuous moving average has been evaluated as a function of 
X for all the series. Figure 8 shows the average (weighted by the number of frames) over all series of 
R(X) tabulated against X. Also shown is a fit to R(X), namely 
 

  R(X )FIT =
var(A(X))

var{Si}
=

1

1+ (X / 58.5)0.377( )
2  (18) 
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Figure 8. The normalized variance of the continuous moving average of the 
relative intensity, averaged over the 63 ABLEX series with duration of at 
least 90 seconds, as a function of the displacement in the moving average. 
Also shown is the fit of Eq[18]. 

 
 

5. APPLICATION OF FORMULATION 

 These calculations were performed in order to estimate the distribution of scintillation Strehls for 
a few second illumination across an airborne path. Previously, the approach was to calculate the 
expected Strehl by performing the appropriate integrals over an averaged turbulence profile6, and use 
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that in a deterministic fashion.  As seen above, however, the time averaged Strehl is a random 
variable. The following algorithm could be used to implement the statistical nature of the time 
averaged Strehl.  The expected Strehl is first evaluated, as before. We then estimate the nominal 
illumination time, based on the expected Strehl, the laser power, the required fluence on target, etc.  
From the plane speed and the nominal illumination time, we find the nominal distance that the 
propagation path would move through the turbulence. The representative variance of the moving 
average is then evaluated, using Eq[1] and Eq[18]. A random number c in (0,1) is then generated. The 
value of the inverse log normal distribution with the required variance, corresponding to the 
cumulative probability c, then gives the effective Strehl for that particular realization. Sometimes the 
system will perform better than average, sometimes worse. 
 
 Since A(X) has a log normal distribution, ln(A(X)) has a normal distribution. The variance of the 
distribution of ln(A(X)) is readily seen to be ln(var(A(X))/S 2-1), and the mean value of ln(A(X)) is 
ln(S ) minus half the variance of ln(A(X)). The inverse of this normal distribution as a function of the 
cumulative probability, can be used to facilitate the evaluation of the realized Strehl values. 
 
 As an example, suppose we were doing a 3 second illumination of a target from an airplane 
moving at 240 m/s, and we calculate that for the particular propagation path the expected scintillation 
Strehl is 0.75.  The estimate of the variance of the instantaneous relative intensity from Eq[1] is 0.368. 
For a 3 second illumination at 240 m/s, the propagation path traverses a distance X of 720 meters. 
From Eq[18], the variance of the 720 meter average is found to be 0.0784 times 0.368, which is 0.029. 
We generate a random number and get 0.16.  The value of a log normally distributed variable with 
variance .029 and cumulative probability 0.16 is 0.585.  For this realization, the 3 second average 
Strehl is 0.585 instead of the expected value of 0.75, and the required dwell time would increase to 3.8 
seconds. If we had got the random number 0.84, the realized Strehl would be 0.914. Note that these 
particular values of c correspond to plus and minus one standard deviation in the distribution of 
ln(A(X)) 
 
 This methodology can be applied to other phenomena of propagation through atmospheric 
turbulence, especially in applications of adaptive optics compensation. For ground based applications, 
the wind and target motion, rather than the laser motion, is the source of the path displacements 
through the turbulence. The moving average of phase error Strehl ratios are also statistically 
distributed quantities. These include deformable mirror fitting error, anisoplanatic phase errors due to 
beacon-beam mismatch, errors due to finite bandwidth of the compensation system, errors due to the 
finite speed of light, etc. 
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